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Abstract. The hyperspectral data compression framework to well investigate
various compression models is presented. Results received with arithmetic
encoder, context-adaptive QM-encoder, adaptive Huffman encoder are adduced.
As a test data the Maine frame set from the AVIRIS freely available data was
used. The received results testify the efficiency of the proposed framework in
comparison with some alternative lossless compression algorithms.
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1 Introduction

Remote sensing is a method of acquisition of information about objects or areas without
making physical contact with them. To acquire information, the specialized film-equip-
ment is mounted on board of the satellite or the plane, flying over the target area. The
equipment fixes reflected radiation from Earth surface in various spectral bands, and
then converts it into digital form for transmission obtained data to the processing station.

Operating range of wavelengths of the remote sensing process is determined by
specific problem facing the mission. There are systems dealing with radiation from
micrometers (visible optical) to meters (radio wave). Multispectral systems usually
operate within several non-overlapped spectral bands while hyperspectral ones treat with
hundreds adjacent narrow bands.

Depending on the type of orbital sensor there are distinguished multispectral (e.g.,
Landsat, IKONOS, Rapid Eye, etc.) and hyperspectral (e.g., AVIRIS) ones. The main
difference between them are the number of bands and their location order over spectrum.
A multispectral sensors cover the spectrum from the visible up to the longwave infrared.
They do not provide the continuous spectral range of an object but some discrete regions.
Unlike these hyperspectral sensors deal with narrow spectral bands over a continuous
spectral range, and produce the real spectrum of all pixels in the scene. So a sensor with
20 bands can be both hyperspectral when it densely covers whole range and multispectral
when its bands did not adjoin.
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2 Trends in Remote Sensing System Progress

Trends in the evolution of remote sensing systems show that the emphasis is shifted to
hyperspectral direction. However, the wide practical use of aerospace monitoring on the
one hand hampered by the lack of sufficient number of satellites and aircraft equipped
with appropriate spectrometers, and on the other hand there are difficulties associated
with transmission, processing and interpretation of large amount of data generated by
these devices.

Traditional data representation (classic hypercube) transmitted to the processing
center are three-dimensional cube (Fig. 1) with the following resolution characteristics:

e spatial which determines the underlying surface details;
e spectral which determines width of spectral band;
e radiometric which determines number of signal levels that the sensor can register.

1 pixel
(radiometric resolution)

Spatial resolution

Fig. 1. Remote sensing data structure

The structure leads to need to transmit a huge data volume from orbit to the Earth
and the problem of data compression becomes very acute and comes to the edge of
technology. For example, volume of the AVIRIS [1] data sets which are used for
compression algorithms and software research and development has following charac-
teristics — 680 columns width (for AVIRIS Maine), 224 spectral samples per pixel, 12
bits per sample. This leads to more than 223 kB data per row to be transmitted over radio
link. Taking into account the characteristics of modern radio links and the fact that the
scanning is carried out in continuous mode the primary requirements to data compression
algorithms are high compression ratio and low computation complexity. The last is
concerned with limited onboard hardware capabilities.

3 Fourier Transform Image Spectrometer

There are some approaches to form the hyperspectral response for single pixel of image.
Classical solution is using the prism or diffraction grating with swinging mirror scanning
along row and orbital movement as column directions. Particular kind of hyperspectral
equipment is the Fourier Transform Imaging Spectrometer (FTIS) based on any
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interferometer, for example, Sagnac one [2] (Fig. 2). Unlike equipment fulfilling direct
spectral measurements FTIS outcome is interferogram that requires special processing
to obtain the same spectral image cube with dimensions equal to rows X cols X spectral
response. That special processing is one of Fourier transforms, e.g. cosine one. There
are two approaches — to transmit raw FTIS data over radio link and fulfill Fourier trans-
form on receiver side, and fulfill Fourier transform onboard and transmit ready spectral
data. Our work with respect to FTIS deal with the first case — raw data are compressed
and transmitted; all remaining work is fulfilled by receiver.
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Fig. 2. Sagnac interferometer

|

I\
!'n \"\ ,Aw W
oy

i

,\.,

\

|

il

hMW"H '“'1“‘ “H' ”

|
H

Fig. 3. Modulation function sample

To test the compression algorithms some technique of synthesis of Fourier inter-
ferograms from AVIRIS hyperspectral data has been developed. Modulation function
shown in Fig. 3 is formed on the basis of real data or is synthesized mathematically:

M
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where uk and vk — value in a layer k of pixel (i,j) of the initial and modulated cubes,

respectlvely, Viax — the maximum value in a layer k ; m; — the maximum element in a
layer k ; mmax — maximum element of all cube. The received value is rounded up to
closest integer number.

4 Review of Compression Algorithms

After analysis of the literature following two classes of hyperspectral data compression
algorithms have been identified:

e using commonly known compression techniques;
e using adaptation under their given condition.

The first class of compression algorithms are often uses lossless and near lossless
methods. Algorithm compresses near lossless if the information loss does not exceed
the noise induced by the equipment used (spectrometer). As part of this approach are
the following basic classes:

e algorithms based on prediction (LP [3], FL [4], SLSQ [5], CCAP [6], M-CALIC
[7D;

e algorithms based on table look-up (LUT [8], LAIS-QLUT [9]);

e algorithms based on wavelet decomposition (3D-SPECK [10]).

The compression algorithms based on prediction outline some area in the vicinity of
the pixel within which the mathematical operation is performed (the prediction step).
The result of the prediction is subtracted from the original pixel value and the prediction
error is generated, which is transmitted to the entropy coding unit. The output of that
unit form is compressed data stream. Decompression is carried out in reverse order. As
a coding system, for example, the Golomb-Rice codec may be used or any arithmetic
one allowing hardware implementation.

The main problem of many prediction algorithms is high computing complexity. But
algorithms need low memory requirements.

The objective of look-up table algorithms is speed up the computations using the
fact that the correlation between the spectral channels is essential enough. For this
purpose, the table containing the prediction values is used. The dimension of that table
is equal to number of spectral channels multiplied by the maximum value for the given
radiometric resolution.

The prediction process for current sample [row] [col] [layer] is:

pred[row] [col] [plane] =

LUT [layer] [data[row] [col] [plane-111];
LUT[layer] [data[row] [col] [plane-1]] =
datal[row] [col] [plane];

where plane is spectral channel index. The resulting value pred will be considered
as predicted. Further processing is equivalent to the prediction algorithm.
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The algorithms based on the discrete wavelet transform is the most demanding to
computing resources. This class of algorithms requires to preliminary transform every
spectral plane to the spatial frequency domain. Then first are encoded the most signifi-
cant (high-frequency) of the wavelet coefficients and the least significant ones are coded
in the last.

This approach allows both lossless (when all the wavelet coefficients are encoded),
and controlled lossy compression. The main drawback of the approach is the computa-
tional complexity associated with the data cube transformation to the frequency domain,
as well as requirements to memory bandwidth because will be random memory access
when processing wavelet coefficients.

The other approach is based on an essential redundancy of the generated data that is
caused by high spectral resolution. The algorithms of the class are based on the following
simplifications:

e requirements to necessary spectral characteristics are known. In this case it is possible
to transmit only necessary spectral channels or do not transmit uninformative ones
(which could occur, for example, due to bad atmospheric condition), i.e. reduce the
hyperspectral case to multispectral one;

e perform a full or a partial analysis of received data and transmit the result, but not
the data itself. Unfortunately, this approach is difficult to implement on satellite
board. Nevertheless, the advantage of approach is that the required data transmitted
to the Earth.

S Features of Hyperspectral Data

When designing the compression algorithm some correlation characteristics of hyper-
spectral data was studied allowing to evaluate the similarity between pixels and chan-
nels. The following formula are used to determine the spectral (2) and the spatial (3)
correlation [11]:

Cun = @

. )
b)) = ——one ©)
value of pixel with coordinates (Z, j) in the spatial slice of
the channel k, X, — a population mean in the channel k, M and N — width and height of
the channel in spatial area, C = cov(X) — covariance matrix.

As can be seen from Figs. 4 and 5, the correlation between closely spaced interfero-
gram tends to one. However, there are areas the correlation between which tends to zero.
This is the result of weather condition, for example, part of the far infrared radiation is

where Xijh = X — X Xy jpo —
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absorbed by water vapor and carbon dioxide. Respectively if the spectrometer covers
the appropriate range of spectrum some notches may be occur on spectrogram.

50 100 150 200

Fig. 4. Spectral correlation
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Fig. 5. Spatial correlation

The main requirements for the compression algorithm are:
universality that means possibility of using the traditional spectral hypercube and

Fourier-interferogram formed one;

lossless compression that is caused by insufficient information available related to
influence of data loss on the quality of the interferogram hypercube recovery;
computational simplicity of the algorithm and the possibility of parallel processing.
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6 Hyperspectral Data Compression Framework

In accordance with aforementioned features and requirements compression algorithm
has been developed. That algorithm consists of preprocessing of each interferogram
sample plane, reduction of correlation degree between the interferogram sample plane,
and an encoder.

Figure 6 shows an example for three interferogram sample planes. The total number
of sample planes is divided into subset of fixed size m < M which are input of a
compression algorithm. Recommended m = 10 — 15 sample planes. This recommen-
dation is related with correlation between the sample planes (Figs. 4 and 5).

Plane #1 Plane #2 Plane #3

‘Preprocessing‘ ‘Preprocessingk ‘Preprocessing|

Reduce the inter-
channel correlation

|

Encoder

Complressed
stream

Fig. 6. Compression system model

As the preliminary step lossless wavelet decomposition is used. This allows to reduce
data redundancy, and appends the ability to control the compression process (model
adaptation for lossy compression case).

To reduce the degree of correlation between adjacent sample planes the difference
method is used.

The final stage of the algorithm is the result encoder to compressed stream. The
following options are examined as the encoder:

e adaptive Huffman encoder;
e arithmetic encoder;
e contextadaptive QM-encoder.

7 Framework Testing

AVIRIS (Hawaii, Maine) set was used to test compression model. AVIRIS is a standard
in the field of hyperspectral data compression research. The sensor allows to capture
images with a spatial resolution of 20 X 20 m per pixel in the spectral region from 400 nm
to 2500 nm. Channel bandwidth is equal to 10 nm (224 spectral channels). The sensor
uses 12-bit analog-to-digital converter.
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To form interferogram from AVIRIS hypercube data modulation method was used
(1), the modulation function shown in Fig. 3.
Test data comply with the following parameters:

radiometric resolution — 12-bit positive integer;

spatial image resolution — 512 lines, 680 columns for AVIRIS Maine and 614
columns for AVIRIS Hawaii;

number of spectral channels for classic hypercube — 224;

number of interferogram sample planes generated — 256. (Table 1)

Table 1. Test results

Compression ratio, times
AVIRIS Maine AVIRIS Hawaii
Classic hypercube
Arithmetic encoder 2,98 3,16
Context-adaptive QM- 291 3,11
encoder
Adaptive Huffman encoder | 3,02 3,21
Fourier interferogram
Arithmetic encoder 4,69 4,62
Context-adaptive QM- 4,50 4,55
encoder
Adaptive Huffman encoder | 4,78 4,70

The advantages of the proposed compression algorithm are:

e universality — it is possible to apply algorithm to the classic hypercube and inter-
ferogram one;
possibility of parallel processing;
computational simplicity (there are no arithmetic operations with high latency, i.e.
multiplication and division).

8 Conclusion

The received results testify the efficiency of the proposed framework in comparison with
some alternative lossless compression algorithms. The offered operation sequence is
mathematically simple and does not demand essential computing resources.

In prospect it is expected to:

e explore various versions of wavelet-decompositions;
e extend the test set by other AVIRIS, LANDSAT, and SPOT-4 data.
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